Applications

ASynchronous Optical Sampling (ASOPS)

Conventional time domain spectroscopy uses a translation slide to adjust the delay between a split ultrafast laser beam arriving at a sample. The first beam causes excitation of a sample into a non-equilibrium state, followed by the delayed pulse, that probes the sample response. By using the translation slide the delay can be lengthened by increasing the distance one arm of the split has to travel, thus analysing the sample response over different time delays.

The sample response is often analysed in terms of reflectivity, transmission or other electro-optic phenomena. Ultrafast time-domain spectroscopy is used to evaluate carrier relaxation, lattice vibrations, and other collective dynamic phenomena (polaritons, plasmons, superconductivity, phase transitions etc) in solids, semiconductors and gases. Typical experimental realisations include: terahertz (THz) time domain spectroscopy, ultrafast pump probe spectroscopy, semiconductor and wafer inspection based on picosecond ultrasound, time resolved photoelectron spectroscopy and rapid scanning optical coherence tomography.

A severe disadvantage of the conventional approach is the fact that a physical mass needs to be moved to accomplish the time-delay, significantly limiting the scanning speed. In addition, translation stages suffer from residual manufacturing tolerances and alignment error impeding precise calibration of potentially causing measurement artifacts.

Asynchronous optical sampling measures the same sample characteristics but uses two ultrafast lasers with offset repetition rates. The time separation between excitation and probe pulse is scanned automatically at a constant rate given by the offset frequency. This has the benefit of offering high speed analysis with a 1 nanosecond time window with a 45 femtosecond resolution in just a few milliseconds. Additionally, the stability of the system is improved as there are no moving mechanics to affect pointing stability or spot sizes.

Laser Quantum offer a number of products for ASOPS. The gigajet oscillators offer flexibility for scientific investigation while the taccor is a robust turnkey laser. The TL-1000 ASOPS offers the timing mechanism to produce the high precision needed for offset frequency or the gigajet Twin is a dual oscillator with the timing mechanisms.

  • gigajet - GHz Ultrafast oscillator
  • taccor - Turnkey GHz laser
  • gecco - Low maintenance 84MHz laser
  • TL-1000 - TL-1000 timing regulation
  • gigajet TWIN - Twin Gigajets set up to provide the pulses needed

Available Products

Top